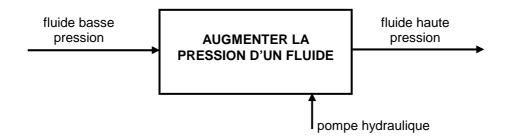

DOSSIER TECHNIQUE

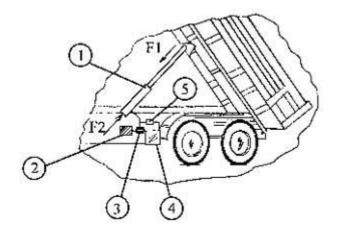

POMPE PHP 15

Lycée C. & R. JANOT, 2001

- 1 Fonction principale d'une pompe hydraulique PHP.15
- 2 Principe d'utilisation de la pompe hydraulique PHP.15
- 3 Principe de fonctionnement
- 4 Principe de fonctionnement sommaire du générateur PHP.15
- 5 Nomenclature
- 6 Plan d'ensemble
- 7 Schémas cinématiques
- 8 Caractéristiques techniques des pompes

1 - Fonction principale d'une pompe hydraulique PHP.15

2 - Principe d'utilisation de la pompe hydraulique PHP.15


Exemple pratique : équipement hydraulique de bennage.

Dans cette application, la pompe PHP.15 fait partie intégrante d'un ensemble hydraulique destiné au fonctionnement d'une benne basculante de chantier, généralement employée pour le transport des matériaux et le terrassement.

La benne basculante est fixée ou attelée au tracteur ou porteur routier.

3 - Principe de fonctionnement

- $(1) = v\acute{e}rin,$
- (2) = prise de mouvement,
- (3) = pompe PHP.15,
- (4) = réservoir d'huile,
- (5) = vanne de manœuvre.

Le basculement de la benne est obtenu par le **déplacement du piston du vérin** (1) qui est le récepteur transmetteur de puissance hydraulique.

On peut montrer en statique que ce déplacement est possible si l'effort de poussé F_2 est supérieur à l'effort résistant F_1 (du au poids à lever).


La **pression hydraulique** sera fournie par la pompe PHP.15 (2) qui joue le rôle principal de **générateur de puissance**.

Dans le cas de l'application ci-dessus, la pression de la pompe varie en fonction de la charge. Pour une charge moyenne, la pression P est comprise entre 130 et 250 bars.

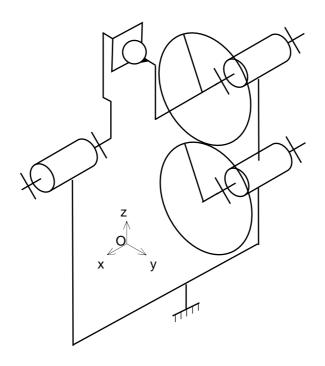
4 - Principe de fonctionnement sommaire du générateur PHP.15

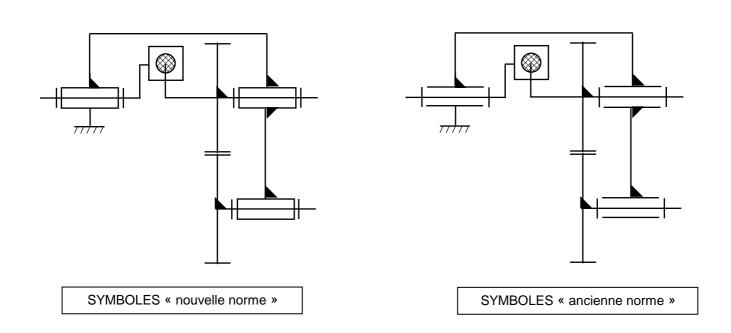
Cette pompe se compose essentiellement d'un carter dans lequel tourne un couple de pignons supportés par deux paliers équilibrés par la pression de refoulement.

La pompe est entraînée en rotation par une prise de mouvement (2) généralement flasquée directement sur la boite de vitesses du véhicule. La liaison « arbre de pompe/prise de mouvement » est obtenue par un accouplement.

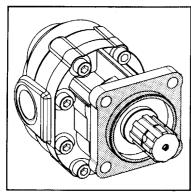
Lors de la rotation de l'arbre de pompe, la dent qui se dégage du creux antagoniste (côté aspiration) crée une dépression qui provoque l'afflux du fluide stocké dans le réservoir (4). L'huile emprisonnée entre les dents, le carter et les paliers est véhiculée jusqu'à l'orifice opposé. Lors de l'engrènement, le fluide est chassé vers la sortie (côté pression) par la dent pénétrant dans le creux de l'autre pignon.

<u>Débit d'huile</u> : il est directement fonction de la vitesse de rotation de la prise de mouvement.


5 - Nomenclature


25	1	Joint		
24	1	Bouchon, vis sans tête HC, M12*1,5-10		conique
23	8	Rondelle		
22	8	Vis CHC, M10-35	Classe 12,8	NF E 25-125
21	1	Bague d'étanchéité		STEFA CK 25*40*8
20	1	Rondelle		
19	1	Circlips pour alésage 40*1,75		NF E 25-165
18	1	Jonc		
17	1	Bague d'étanchéité, forme A		STEFA CB 42*72*8
16	1	Bouchon		filetage G 3/4
15	1	Roue menée	10 Ni Cr 6	cémenté 0,6-0,8 mm - 60 HRC
14	1	Roue menante	10 Ni Cr 6	cémenté 0,6-0,8 mm - 60 HRC
13	2	Joint de lunette		en deux parties
12	2	lunette	Cu Sn 8	
11	1	Corps	FGS 350-22	
10	1	Joint torique		SIMRIT OR 80,00-2,50
9	2	Goupille de positionnement		
8	4	Coussinet		
7	1	Flasque		
6	1	Circlips pour arbre 35*2,5		NF E 22-163
5	1	Rondelle	C 35	
4	1	Roulement à rouleaux coniques		Réf. 32207
3	1	Rondelle	C35	
2	1	Roulement à rouleaux coniques		Réf. 32207
1	1	Arbre moteur	16 Ni Cr 6	cémenté 0,6-0,8 mm - 60 HRC
Rep	Nbr	Désignation	Matière	Observations

6 - Plan d'ensemble


Voir le format A3 ci après.

7 - Schémas cinématiques

8 - Caractéristiques techniques des pompes

Arbre DIN 5462

NOTA: Pompes équipées de 2 roulements coniques en tête, acceptant donc un effort radial. Elles peuvent être: entrainées par cardan ou montées sur les prises de forces déportées, non renforcées.

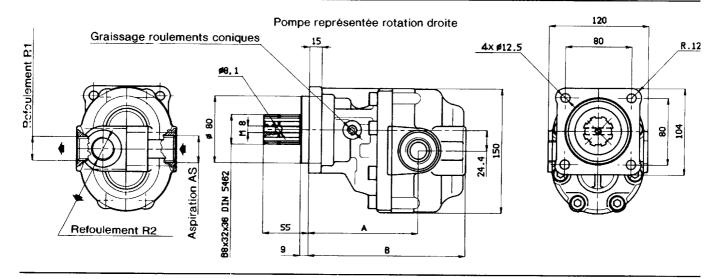
Viscosité d'huile recommandée 2,5 à 6,5°E à 50°C

Filtration recommandée

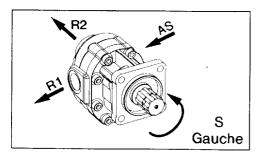
≪ 30 μ

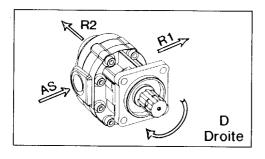
Température

-10 à +80°C


Temps de fonctionnement

Continu: 100%

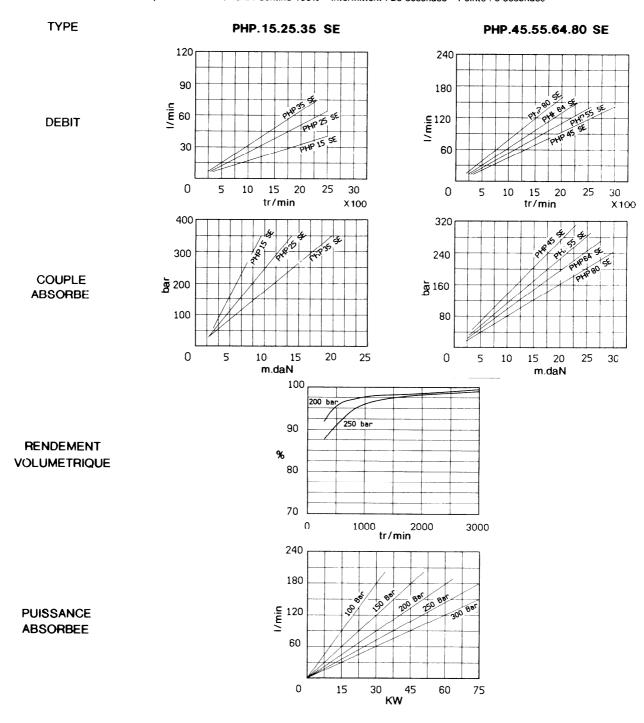

Intermittent: 20 secondes


Pointe: 6 secondes

TYPE	CODE		
PHP.15.SE .S	05312401511		
PHP.15.SE.D	053 1240 1512		
PHP.25. SE .S	05312402511		
PHP.25.SED	05312402512		
PHP.35. SE .S	05312403511		
PHP.35. SE.D	05312403512		
PHP.45. SE .S	05312404511		
PHP.45. SE .D	05312404512		
PHP.55. SE S	05312405511		
PHP.55. SE .D	05312405512		
PHP.64.SE.S	05312406411		
PHP.64. SE .D	05312406412		
PHP.80. SE.S	05312408011		
PHP.80. SE .D	05312408012		

DEFINITION SENS DE ROTATION

CARACTERISTIQUES DIMENSIONNELLES


TYPE	Cylind cm3/tr	AS Gaz	R1~R2 Gaz	Α	В	Poids Kg
PHP.15. SE.*	15,6	3/4"	1/2"	129	169	10,7
PHP.25.SE.*	24,9	3/4"	1/2"	135	175	11,5
PHP.35.SE .*	34,3	3/4"	1/2"	141	181	12,3
PHP.45. SE.*	45,2	1"	3/4"	131	187	11.2
PHP.55. SE .*	54,5	1"	3/4"~	137	194	1.7
PHP.64.SE.*	63,9	1"	3/4"	143	200	12.2
PHP.80. 3E*	78,7	1"1/4	1"	142	2 i0	10.1

Ces pompes sont équipées de 2 orifices de refoulement Foret R2, permettant d'effectuer le raccordement en fonction de la place disponible. Elles sont livrées avec un bouchon sur l'orifice R2

8 - Caractéristiques techniques des pompes (suite)

TYPE		PHP.15	PHP.25	PHP.35	PHP.45	PHP.55	PHP.64	PHP.80
Pression maxi	en continu	300	300	300	300	240	220	200
bar	en intermittent	330	330	330	330	270	250	220
	en pointe	350	350	350	350	290	270	240
Vitesse de rotation	en continu	2500	2500	2200	2200	2000	1800	1500
maxi. tr/min	en intermittent	3000	3000	2500	2500	2200	2000	1800
	en pointe	3500	3500	2800	2800	2500	2200	2000
Vitesse mini. intermittente		650	450	350	350	300	250	180

Temps de fonctionnement : Continu 100% - Intermittent : 20 secondes - Pointe : 6 secondes

